extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic7).1C23 = C2×C28⋊2Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).1C2^3 | 448,921 |
(C2×Dic7).2C23 = C2×C28.6Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).2C2^3 | 448,922 |
(C2×Dic7).3C23 = C42.274D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).3C2^3 | 448,923 |
(C2×Dic7).4C23 = C2×C4.D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).4C2^3 | 448,929 |
(C2×Dic7).5C23 = C42.276D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).5C2^3 | 448,930 |
(C2×Dic7).6C23 = C2×C42⋊2D7 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).6C2^3 | 448,931 |
(C2×Dic7).7C23 = C42.277D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).7C2^3 | 448,932 |
(C2×Dic7).8C23 = C23⋊2Dic14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).8C2^3 | 448,936 |
(C2×Dic7).9C23 = C2×C22.D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).9C2^3 | 448,945 |
(C2×Dic7).10C23 = C23⋊3D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).10C2^3 | 448,946 |
(C2×Dic7).11C23 = C24.30D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).11C2^3 | 448,947 |
(C2×Dic7).12C23 = C24.31D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).12C2^3 | 448,948 |
(C2×Dic7).13C23 = C2×C28⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).13C2^3 | 448,950 |
(C2×Dic7).14C23 = C14.72+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).14C2^3 | 448,953 |
(C2×Dic7).15C23 = C2×D14⋊2Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).15C2^3 | 448,962 |
(C2×Dic7).16C23 = C14.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).16C2^3 | 448,963 |
(C2×Dic7).17C23 = C2×C4⋊C4⋊D7 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).17C2^3 | 448,965 |
(C2×Dic7).18C23 = C14.52- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).18C2^3 | 448,966 |
(C2×Dic7).19C23 = C14.112+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).19C2^3 | 448,967 |
(C2×Dic7).20C23 = C14.62- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).20C2^3 | 448,968 |
(C2×Dic7).21C23 = C42.89D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).21C2^3 | 448,971 |
(C2×Dic7).22C23 = C42.90D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).22C2^3 | 448,972 |
(C2×Dic7).23C23 = C42⋊9D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).23C2^3 | 448,978 |
(C2×Dic7).24C23 = C42.92D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).24C2^3 | 448,979 |
(C2×Dic7).25C23 = C42.93D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).25C2^3 | 448,981 |
(C2×Dic7).26C23 = C42.94D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).26C2^3 | 448,982 |
(C2×Dic7).27C23 = C42.95D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).27C2^3 | 448,983 |
(C2×Dic7).28C23 = C42.96D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).28C2^3 | 448,984 |
(C2×Dic7).29C23 = C42.97D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).29C2^3 | 448,985 |
(C2×Dic7).30C23 = C42.98D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).30C2^3 | 448,986 |
(C2×Dic7).31C23 = C42.99D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).31C2^3 | 448,987 |
(C2×Dic7).32C23 = C42.100D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).32C2^3 | 448,988 |
(C2×Dic7).33C23 = D4⋊5Dic14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).33C2^3 | 448,992 |
(C2×Dic7).34C23 = C42.104D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).34C2^3 | 448,993 |
(C2×Dic7).35C23 = C42.105D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).35C2^3 | 448,994 |
(C2×Dic7).36C23 = C42.106D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).36C2^3 | 448,995 |
(C2×Dic7).37C23 = D4⋊6Dic14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).37C2^3 | 448,996 |
(C2×Dic7).38C23 = C42⋊12D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).38C2^3 | 448,1000 |
(C2×Dic7).39C23 = D4×D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).39C2^3 | 448,1002 |
(C2×Dic7).40C23 = D28⋊23D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).40C2^3 | 448,1003 |
(C2×Dic7).41C23 = D28⋊24D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).41C2^3 | 448,1004 |
(C2×Dic7).42C23 = D4⋊5D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).42C2^3 | 448,1007 |
(C2×Dic7).43C23 = C42.113D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).43C2^3 | 448,1011 |
(C2×Dic7).44C23 = C42.114D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).44C2^3 | 448,1012 |
(C2×Dic7).45C23 = C42⋊17D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).45C2^3 | 448,1013 |
(C2×Dic7).46C23 = C42.115D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).46C2^3 | 448,1014 |
(C2×Dic7).47C23 = C42.116D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).47C2^3 | 448,1015 |
(C2×Dic7).48C23 = C42.118D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).48C2^3 | 448,1017 |
(C2×Dic7).49C23 = C42.119D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).49C2^3 | 448,1018 |
(C2×Dic7).50C23 = Dic14⋊10Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).50C2^3 | 448,1020 |
(C2×Dic7).51C23 = Q8⋊5Dic14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).51C2^3 | 448,1022 |
(C2×Dic7).52C23 = Q8⋊6Dic14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).52C2^3 | 448,1023 |
(C2×Dic7).53C23 = Q8×D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).53C2^3 | 448,1028 |
(C2×Dic7).54C23 = Q8⋊5D28 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).54C2^3 | 448,1029 |
(C2×Dic7).55C23 = D28⋊10Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).55C2^3 | 448,1032 |
(C2×Dic7).56C23 = C42.132D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).56C2^3 | 448,1034 |
(C2×Dic7).57C23 = C42.133D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).57C2^3 | 448,1035 |
(C2×Dic7).58C23 = C42.134D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).58C2^3 | 448,1036 |
(C2×Dic7).59C23 = C42.136D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).59C2^3 | 448,1038 |
(C2×Dic7).60C23 = C24⋊2D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).60C2^3 | 448,1042 |
(C2×Dic7).61C23 = C24.34D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).61C2^3 | 448,1045 |
(C2×Dic7).62C23 = C24.35D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).62C2^3 | 448,1046 |
(C2×Dic7).63C23 = C24⋊4D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).63C2^3 | 448,1047 |
(C2×Dic7).64C23 = C24.36D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).64C2^3 | 448,1048 |
(C2×Dic7).65C23 = Dic14⋊19D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).65C2^3 | 448,1051 |
(C2×Dic7).66C23 = C14.342+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).66C2^3 | 448,1054 |
(C2×Dic7).67C23 = C14.352+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).67C2^3 | 448,1055 |
(C2×Dic7).68C23 = C14.712- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).68C2^3 | 448,1056 |
(C2×Dic7).69C23 = D7×C4⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).69C2^3 | 448,1057 |
(C2×Dic7).70C23 = C14.372+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).70C2^3 | 448,1058 |
(C2×Dic7).71C23 = C4⋊C4⋊21D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).71C2^3 | 448,1059 |
(C2×Dic7).72C23 = C14.382+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).72C2^3 | 448,1060 |
(C2×Dic7).73C23 = C14.722- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).73C2^3 | 448,1061 |
(C2×Dic7).74C23 = C14.402+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).74C2^3 | 448,1063 |
(C2×Dic7).75C23 = D28⋊20D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).75C2^3 | 448,1065 |
(C2×Dic7).76C23 = C14.422+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).76C2^3 | 448,1066 |
(C2×Dic7).77C23 = C14.432+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).77C2^3 | 448,1067 |
(C2×Dic7).78C23 = C14.442+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).78C2^3 | 448,1068 |
(C2×Dic7).79C23 = C14.452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).79C2^3 | 448,1069 |
(C2×Dic7).80C23 = C14.472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).80C2^3 | 448,1072 |
(C2×Dic7).81C23 = C14.482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).81C2^3 | 448,1073 |
(C2×Dic7).82C23 = C14.492+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).82C2^3 | 448,1074 |
(C2×Dic7).83C23 = (Q8×Dic7)⋊C2 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).83C2^3 | 448,1075 |
(C2×Dic7).84C23 = C14.152- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).84C2^3 | 448,1078 |
(C2×Dic7).85C23 = D7×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).85C2^3 | 448,1079 |
(C2×Dic7).86C23 = C4⋊C4⋊26D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).86C2^3 | 448,1080 |
(C2×Dic7).87C23 = C14.162- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).87C2^3 | 448,1081 |
(C2×Dic7).88C23 = C14.172- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).88C2^3 | 448,1082 |
(C2×Dic7).89C23 = C14.512+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).89C2^3 | 448,1087 |
(C2×Dic7).90C23 = C14.1182+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).90C2^3 | 448,1088 |
(C2×Dic7).91C23 = C14.522+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).91C2^3 | 448,1089 |
(C2×Dic7).92C23 = C14.532+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).92C2^3 | 448,1090 |
(C2×Dic7).93C23 = C14.212- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).93C2^3 | 448,1092 |
(C2×Dic7).94C23 = C14.242- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).94C2^3 | 448,1096 |
(C2×Dic7).95C23 = C14.572+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).95C2^3 | 448,1098 |
(C2×Dic7).96C23 = C14.582+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).96C2^3 | 448,1099 |
(C2×Dic7).97C23 = C14.262- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).97C2^3 | 448,1100 |
(C2×Dic7).98C23 = C4⋊C4.197D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).98C2^3 | 448,1102 |
(C2×Dic7).99C23 = C14.802- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).99C2^3 | 448,1103 |
(C2×Dic7).100C23 = C14.602+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).100C2^3 | 448,1104 |
(C2×Dic7).101C23 = C14.1202+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).101C2^3 | 448,1106 |
(C2×Dic7).102C23 = C14.1212+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).102C2^3 | 448,1107 |
(C2×Dic7).103C23 = C14.822- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).103C2^3 | 448,1108 |
(C2×Dic7).104C23 = C4⋊C4⋊28D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).104C2^3 | 448,1109 |
(C2×Dic7).105C23 = C14.622+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).105C2^3 | 448,1112 |
(C2×Dic7).106C23 = C14.832- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).106C2^3 | 448,1113 |
(C2×Dic7).107C23 = C14.842- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).107C2^3 | 448,1115 |
(C2×Dic7).108C23 = C14.852- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).108C2^3 | 448,1118 |
(C2×Dic7).109C23 = C14.682+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).109C2^3 | 448,1119 |
(C2×Dic7).110C23 = C14.862- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).110C2^3 | 448,1120 |
(C2×Dic7).111C23 = C42.140D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).111C2^3 | 448,1125 |
(C2×Dic7).112C23 = D7×C4.4D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).112C2^3 | 448,1126 |
(C2×Dic7).113C23 = C42⋊18D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).113C2^3 | 448,1127 |
(C2×Dic7).114C23 = C42.141D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).114C2^3 | 448,1128 |
(C2×Dic7).115C23 = D28⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).115C2^3 | 448,1129 |
(C2×Dic7).116C23 = C42.144D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).116C2^3 | 448,1135 |
(C2×Dic7).117C23 = C42⋊22D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).117C2^3 | 448,1136 |
(C2×Dic7).118C23 = C42.145D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).118C2^3 | 448,1137 |
(C2×Dic7).119C23 = Dic14⋊7Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).119C2^3 | 448,1138 |
(C2×Dic7).120C23 = C42.147D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).120C2^3 | 448,1139 |
(C2×Dic7).121C23 = C42.148D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).121C2^3 | 448,1142 |
(C2×Dic7).122C23 = D28⋊7Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).122C2^3 | 448,1143 |
(C2×Dic7).123C23 = C42.152D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).123C2^3 | 448,1147 |
(C2×Dic7).124C23 = C42.153D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).124C2^3 | 448,1148 |
(C2×Dic7).125C23 = C42.157D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).125C2^3 | 448,1152 |
(C2×Dic7).126C23 = C42.158D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).126C2^3 | 448,1153 |
(C2×Dic7).127C23 = C42.159D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).127C2^3 | 448,1154 |
(C2×Dic7).128C23 = D7×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).128C2^3 | 448,1156 |
(C2×Dic7).129C23 = C42⋊24D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).129C2^3 | 448,1158 |
(C2×Dic7).130C23 = C42.162D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).130C2^3 | 448,1161 |
(C2×Dic7).131C23 = C42⋊25D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).131C2^3 | 448,1164 |
(C2×Dic7).132C23 = C42.165D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).132C2^3 | 448,1165 |
(C2×Dic7).133C23 = C42.166D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).133C2^3 | 448,1166 |
(C2×Dic7).134C23 = C42⋊26D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).134C2^3 | 448,1168 |
(C2×Dic7).135C23 = C42.238D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).135C2^3 | 448,1169 |
(C2×Dic7).136C23 = D28⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).136C2^3 | 448,1170 |
(C2×Dic7).137C23 = C42.168D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).137C2^3 | 448,1172 |
(C2×Dic7).138C23 = C42⋊28D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).138C2^3 | 448,1173 |
(C2×Dic7).139C23 = D7×C4⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).139C2^3 | 448,1176 |
(C2×Dic7).140C23 = C42.171D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).140C2^3 | 448,1177 |
(C2×Dic7).141C23 = D28⋊12D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).141C2^3 | 448,1179 |
(C2×Dic7).142C23 = D28⋊8Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).142C2^3 | 448,1180 |
(C2×Dic7).143C23 = C42.241D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).143C2^3 | 448,1181 |
(C2×Dic7).144C23 = C42.174D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).144C2^3 | 448,1182 |
(C2×Dic7).145C23 = D28⋊9Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).145C2^3 | 448,1183 |
(C2×Dic7).146C23 = C42.177D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).146C2^3 | 448,1185 |
(C2×Dic7).147C23 = C42.180D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).147C2^3 | 448,1188 |
(C2×Dic7).148C23 = C2×C28.48D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).148C2^3 | 448,1237 |
(C2×Dic7).149C23 = C2×C23.23D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).149C2^3 | 448,1242 |
(C2×Dic7).150C23 = C2×C28⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).150C2^3 | 448,1243 |
(C2×Dic7).151C23 = C24.72D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).151C2^3 | 448,1244 |
(C2×Dic7).152C23 = C2×C28⋊2D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).152C2^3 | 448,1253 |
(C2×Dic7).153C23 = D4×C7⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).153C2^3 | 448,1254 |
(C2×Dic7).154C23 = C24⋊7D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).154C2^3 | 448,1257 |
(C2×Dic7).155C23 = C24.41D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).155C2^3 | 448,1258 |
(C2×Dic7).156C23 = C2×Dic7⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).156C2^3 | 448,1263 |
(C2×Dic7).157C23 = C2×D14⋊3Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).157C2^3 | 448,1266 |
(C2×Dic7).158C23 = Q8×C7⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).158C2^3 | 448,1268 |
(C2×Dic7).159C23 = C14.442- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).159C2^3 | 448,1269 |
(C2×Dic7).160C23 = C14.1042- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).160C2^3 | 448,1277 |
(C2×Dic7).161C23 = C14.1052- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).161C2^3 | 448,1278 |
(C2×Dic7).162C23 = C14.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).162C2^3 | 448,1282 |
(C2×Dic7).163C23 = C14.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).163C2^3 | 448,1283 |
(C2×Dic7).164C23 = C14.1072- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).164C2^3 | 448,1284 |
(C2×Dic7).165C23 = C14.1082- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).165C2^3 | 448,1286 |
(C2×Dic7).166C23 = C14.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).166C2^3 | 448,1287 |
(C2×Dic7).167C23 = C2×D4.10D14 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).167C2^3 | 448,1377 |
(C2×Dic7).168C23 = C14.C25 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | 4 | (C2xDic7).168C2^3 | 448,1378 |
(C2×Dic7).169C23 = D14.C24 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).169C2^3 | 448,1380 |
(C2×Dic7).170C23 = D7×2- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).170C2^3 | 448,1381 |
(C2×Dic7).171C23 = C2×C4×Dic14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).171C2^3 | 448,920 |
(C2×Dic7).172C23 = C2×C42⋊D7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).172C2^3 | 448,925 |
(C2×Dic7).173C23 = C2×C4×D28 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).173C2^3 | 448,926 |
(C2×Dic7).174C23 = C4×C4○D28 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).174C2^3 | 448,927 |
(C2×Dic7).175C23 = C2×C22⋊Dic14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).175C2^3 | 448,934 |
(C2×Dic7).176C23 = C2×C23.D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).176C2^3 | 448,935 |
(C2×Dic7).177C23 = C24.24D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).177C2^3 | 448,939 |
(C2×Dic7).178C23 = C2×D14.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).178C2^3 | 448,941 |
(C2×Dic7).179C23 = C2×D14⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).179C2^3 | 448,942 |
(C2×Dic7).180C23 = C24.27D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).180C2^3 | 448,943 |
(C2×Dic7).181C23 = C2×Dic7.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).181C2^3 | 448,944 |
(C2×Dic7).182C23 = C2×Dic7.Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).182C2^3 | 448,951 |
(C2×Dic7).183C23 = C2×C28.3Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).183C2^3 | 448,952 |
(C2×Dic7).184C23 = C2×D7×C4⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).184C2^3 | 448,954 |
(C2×Dic7).185C23 = C2×C4⋊C4⋊7D7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).185C2^3 | 448,955 |
(C2×Dic7).186C23 = C14.82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).186C2^3 | 448,957 |
(C2×Dic7).187C23 = C2×D14.5D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).187C2^3 | 448,958 |
(C2×Dic7).188C23 = C2×C4⋊D28 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).188C2^3 | 448,959 |
(C2×Dic7).189C23 = C14.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).189C2^3 | 448,960 |
(C2×Dic7).190C23 = C2×D14⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).190C2^3 | 448,961 |
(C2×Dic7).191C23 = C14.102+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).191C2^3 | 448,964 |
(C2×Dic7).192C23 = C42.87D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).192C2^3 | 448,969 |
(C2×Dic7).193C23 = C42.88D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).193C2^3 | 448,970 |
(C2×Dic7).194C23 = D7×C42⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).194C2^3 | 448,973 |
(C2×Dic7).195C23 = C42⋊7D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).195C2^3 | 448,974 |
(C2×Dic7).196C23 = C42.91D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).196C2^3 | 448,976 |
(C2×Dic7).197C23 = C42⋊8D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).197C2^3 | 448,977 |
(C2×Dic7).198C23 = C42⋊10D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).198C2^3 | 448,980 |
(C2×Dic7).199C23 = D4×Dic14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).199C2^3 | 448,990 |
(C2×Dic7).200C23 = C42.102D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).200C2^3 | 448,991 |
(C2×Dic7).201C23 = C42⋊11D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).201C2^3 | 448,998 |
(C2×Dic7).202C23 = C42.108D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).202C2^3 | 448,999 |
(C2×Dic7).203C23 = C42.228D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).203C2^3 | 448,1001 |
(C2×Dic7).204C23 = Dic14⋊23D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).204C2^3 | 448,1005 |
(C2×Dic7).205C23 = Dic14⋊24D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).205C2^3 | 448,1006 |
(C2×Dic7).206C23 = D4⋊6D28 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).206C2^3 | 448,1008 |
(C2×Dic7).207C23 = C42⋊16D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).207C2^3 | 448,1009 |
(C2×Dic7).208C23 = C42.229D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).208C2^3 | 448,1010 |
(C2×Dic7).209C23 = C42.117D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).209C2^3 | 448,1016 |
(C2×Dic7).210C23 = Q8×Dic14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).210C2^3 | 448,1019 |
(C2×Dic7).211C23 = C42.122D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).211C2^3 | 448,1021 |
(C2×Dic7).212C23 = C42.125D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).212C2^3 | 448,1025 |
(C2×Dic7).213C23 = C4×Q8⋊2D7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).213C2^3 | 448,1026 |
(C2×Dic7).214C23 = C42.126D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).214C2^3 | 448,1027 |
(C2×Dic7).215C23 = Q8⋊6D28 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).215C2^3 | 448,1030 |
(C2×Dic7).216C23 = C42.232D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).216C2^3 | 448,1031 |
(C2×Dic7).217C23 = C42.131D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).217C2^3 | 448,1033 |
(C2×Dic7).218C23 = C42.135D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).218C2^3 | 448,1037 |
(C2×Dic7).219C23 = C24.56D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).219C2^3 | 448,1039 |
(C2×Dic7).220C23 = C24.32D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).220C2^3 | 448,1040 |
(C2×Dic7).221C23 = C24⋊3D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).221C2^3 | 448,1043 |
(C2×Dic7).222C23 = C24.33D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).222C2^3 | 448,1044 |
(C2×Dic7).223C23 = C28⋊(C4○D4) | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).223C2^3 | 448,1049 |
(C2×Dic7).224C23 = C14.682- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).224C2^3 | 448,1050 |
(C2×Dic7).225C23 = Dic14⋊20D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).225C2^3 | 448,1052 |
(C2×Dic7).226C23 = C4⋊C4.178D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).226C2^3 | 448,1053 |
(C2×Dic7).227C23 = D28⋊19D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).227C2^3 | 448,1062 |
(C2×Dic7).228C23 = C14.732- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).228C2^3 | 448,1064 |
(C2×Dic7).229C23 = C14.462+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).229C2^3 | 448,1070 |
(C2×Dic7).230C23 = C14.1152+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).230C2^3 | 448,1071 |
(C2×Dic7).231C23 = C14.752- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).231C2^3 | 448,1076 |
(C2×Dic7).232C23 = C22⋊Q8⋊25D7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).232C2^3 | 448,1077 |
(C2×Dic7).233C23 = D28⋊21D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).233C2^3 | 448,1083 |
(C2×Dic7).234C23 = D28⋊22D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).234C2^3 | 448,1084 |
(C2×Dic7).235C23 = Dic14⋊21D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).235C2^3 | 448,1085 |
(C2×Dic7).236C23 = Dic14⋊22D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).236C2^3 | 448,1086 |
(C2×Dic7).237C23 = C14.202- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).237C2^3 | 448,1091 |
(C2×Dic7).238C23 = C14.222- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).238C2^3 | 448,1093 |
(C2×Dic7).239C23 = C14.232- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).239C2^3 | 448,1094 |
(C2×Dic7).240C23 = C14.772- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).240C2^3 | 448,1095 |
(C2×Dic7).241C23 = C14.562+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).241C2^3 | 448,1097 |
(C2×Dic7).242C23 = C14.792- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).242C2^3 | 448,1101 |
(C2×Dic7).243C23 = D7×C22.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).243C2^3 | 448,1105 |
(C2×Dic7).244C23 = C14.612+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).244C2^3 | 448,1110 |
(C2×Dic7).245C23 = C14.1222+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).245C2^3 | 448,1111 |
(C2×Dic7).246C23 = C14.642+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).246C2^3 | 448,1114 |
(C2×Dic7).247C23 = C14.662+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).247C2^3 | 448,1116 |
(C2×Dic7).248C23 = C14.672+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).248C2^3 | 448,1117 |
(C2×Dic7).249C23 = C42.233D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).249C2^3 | 448,1121 |
(C2×Dic7).250C23 = C42.137D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).250C2^3 | 448,1122 |
(C2×Dic7).251C23 = C42.138D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).251C2^3 | 448,1123 |
(C2×Dic7).252C23 = C42.139D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).252C2^3 | 448,1124 |
(C2×Dic7).253C23 = Dic14⋊10D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).253C2^3 | 448,1130 |
(C2×Dic7).254C23 = C42⋊20D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).254C2^3 | 448,1131 |
(C2×Dic7).255C23 = C42⋊21D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).255C2^3 | 448,1132 |
(C2×Dic7).256C23 = C42.143D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).256C2^3 | 448,1134 |
(C2×Dic7).257C23 = D7×C42.C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).257C2^3 | 448,1140 |
(C2×Dic7).258C23 = C42.150D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).258C2^3 | 448,1145 |
(C2×Dic7).259C23 = C42.151D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).259C2^3 | 448,1146 |
(C2×Dic7).260C23 = C42.154D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).260C2^3 | 448,1149 |
(C2×Dic7).261C23 = C42.155D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).261C2^3 | 448,1150 |
(C2×Dic7).262C23 = C42.156D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).262C2^3 | 448,1151 |
(C2×Dic7).263C23 = C42.160D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).263C2^3 | 448,1155 |
(C2×Dic7).264C23 = C42⋊23D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).264C2^3 | 448,1157 |
(C2×Dic7).265C23 = C42.161D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).265C2^3 | 448,1160 |
(C2×Dic7).266C23 = C42.163D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).266C2^3 | 448,1162 |
(C2×Dic7).267C23 = C42.164D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).267C2^3 | 448,1163 |
(C2×Dic7).268C23 = D7×C4⋊1D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).268C2^3 | 448,1167 |
(C2×Dic7).269C23 = Dic14⋊11D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).269C2^3 | 448,1171 |
(C2×Dic7).270C23 = Dic14⋊8Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).270C2^3 | 448,1174 |
(C2×Dic7).271C23 = Dic14⋊9Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).271C2^3 | 448,1175 |
(C2×Dic7).272C23 = C42.240D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).272C2^3 | 448,1178 |
(C2×Dic7).273C23 = C42.176D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).273C2^3 | 448,1184 |
(C2×Dic7).274C23 = C42.178D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).274C2^3 | 448,1186 |
(C2×Dic7).275C23 = C42.179D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).275C2^3 | 448,1187 |
(C2×Dic7).276C23 = C22×Dic7⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).276C2^3 | 448,1236 |
(C2×Dic7).277C23 = C22×C4⋊Dic7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).277C2^3 | 448,1238 |
(C2×Dic7).278C23 = C2×C23.21D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).278C2^3 | 448,1239 |
(C2×Dic7).279C23 = C2×C4×C7⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).279C2^3 | 448,1241 |
(C2×Dic7).280C23 = C2×D4×Dic7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).280C2^3 | 448,1248 |
(C2×Dic7).281C23 = C2×C23.18D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).281C2^3 | 448,1249 |
(C2×Dic7).282C23 = C2×C28.17D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).282C2^3 | 448,1250 |
(C2×Dic7).283C23 = C24.38D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).283C2^3 | 448,1251 |
(C2×Dic7).284C23 = C2×Dic7⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).284C2^3 | 448,1255 |
(C2×Dic7).285C23 = C2×C28⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).285C2^3 | 448,1256 |
(C2×Dic7).286C23 = C24.42D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).286C2^3 | 448,1259 |
(C2×Dic7).287C23 = C2×Q8×Dic7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).287C2^3 | 448,1264 |
(C2×Dic7).288C23 = C14.422- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).288C2^3 | 448,1265 |
(C2×Dic7).289C23 = C2×C28.23D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).289C2^3 | 448,1267 |
(C2×Dic7).290C23 = C14.452- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).290C2^3 | 448,1270 |
(C2×Dic7).291C23 = C4○D4×Dic7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).291C2^3 | 448,1279 |
(C2×Dic7).292C23 = C14.1062- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).292C2^3 | 448,1280 |
(C2×Dic7).293C23 = (C2×C28)⋊15D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).293C2^3 | 448,1281 |
(C2×Dic7).294C23 = (C2×C28)⋊17D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).294C2^3 | 448,1285 |
(C2×Dic7).295C23 = C23×Dic14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).295C2^3 | 448,1365 |
(C2×Dic7).296C23 = C22×C4○D28 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).296C2^3 | 448,1368 |
(C2×Dic7).297C23 = C22×Q8×D7 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).297C2^3 | 448,1372 |
(C2×Dic7).298C23 = C2×Q8.10D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).298C2^3 | 448,1374 |
(C2×Dic7).299C23 = C2×D4⋊8D14 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).299C2^3 | 448,1376 |
(C2×Dic7).300C23 = D28.39C23 | φ: C23/C22 → C2 ⊆ Out C2×Dic7 | 112 | 8+ | (C2xDic7).300C2^3 | 448,1382 |
(C2×Dic7).301C23 = D7×C2×C42 | φ: trivial image | 224 | | (C2xDic7).301C2^3 | 448,924 |
(C2×Dic7).302C23 = C2×C23.11D14 | φ: trivial image | 224 | | (C2xDic7).302C2^3 | 448,933 |
(C2×Dic7).303C23 = C2×Dic7⋊4D4 | φ: trivial image | 224 | | (C2xDic7).303C2^3 | 448,938 |
(C2×Dic7).304C23 = C2×Dic7⋊3Q8 | φ: trivial image | 448 | | (C2xDic7).304C2^3 | 448,949 |
(C2×Dic7).305C23 = C2×D28⋊C4 | φ: trivial image | 224 | | (C2xDic7).305C2^3 | 448,956 |
(C2×Dic7).306C23 = C42.188D14 | φ: trivial image | 224 | | (C2xDic7).306C2^3 | 448,975 |
(C2×Dic7).307C23 = C4×D4⋊2D7 | φ: trivial image | 224 | | (C2xDic7).307C2^3 | 448,989 |
(C2×Dic7).308C23 = C4×D4×D7 | φ: trivial image | 112 | | (C2xDic7).308C2^3 | 448,997 |
(C2×Dic7).309C23 = C4×Q8×D7 | φ: trivial image | 224 | | (C2xDic7).309C2^3 | 448,1024 |
(C2×Dic7).310C23 = C42.234D14 | φ: trivial image | 224 | | (C2xDic7).310C2^3 | 448,1133 |
(C2×Dic7).311C23 = C42.236D14 | φ: trivial image | 224 | | (C2xDic7).311C2^3 | 448,1141 |
(C2×Dic7).312C23 = C42.237D14 | φ: trivial image | 224 | | (C2xDic7).312C2^3 | 448,1144 |
(C2×Dic7).313C23 = C42.189D14 | φ: trivial image | 224 | | (C2xDic7).313C2^3 | 448,1159 |
(C2×Dic7).314C23 = C22×C4×Dic7 | φ: trivial image | 448 | | (C2xDic7).314C2^3 | 448,1235 |
(C2×Dic7).315C23 = C22×Q8⋊2D7 | φ: trivial image | 224 | | (C2xDic7).315C2^3 | 448,1373 |